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MME 6106  Advanced Thermodynamics 

Fundamental Principles and Equations for a Closed System 
Ref:  C H P Lupis, Chemical Thermodynamics of Materials, North-Holland, 1983, Chapter I. 

Lecture 3 

 

 

2.  The Second Law of Thermodynamics for Closed System 

2.1   Enunciation of the second law 

Under a given set of conditions, a system can be imagined to undergo many processes for which the 

energy is conserved (the first law). But in practice, only those processes occur in which the system 

goes to its state of rest, i.e., to a state of equilibrium. 

By considering that this “state of equilibrium” is a property of the system, and that this property can be 

described by a function, the Second Law determines the direction and extent of such processes. The 

law affirms the existence of a state function named entropy, which tends to increase for all processes if 

the system is remained to be isolated during the whole process. 

For all reversible processes, the state function entropy, S, is defined by 

𝑑𝑆 =  
𝛿𝑄𝑟𝑒𝑣

𝑇
         (2.1) 

And for all irreversible processes 

𝑑𝑆 >  
𝛿𝑄

𝑇
                (2.2) 

It may be noted that, for an isolated system, heat transfer across the boundary is zero and thus, the 

entropy of system in isolated condition always tend to increase. 

 

Proof of Second Law 

 

Consider a cylinder of two compartments of volume V1 and V2. 

In one process, compartment 1 was filled with an ideal gas. By opening the connection between the 

compartments the gas is allowed to expand irreversibly to occupy total volume V1+V2. Since the system is 

isolated, energy remains constant, and as the energy of ideal gas is a function of temperature only, the 

temperature of the system also remains constant. Now we want to calculate the entropy change for this 

irreversible process. 

We imagine a frictionless piston which restores the gas to its original position in a reversible manner and with 

the interaction with the surroundings. The energy remains the same as before because it is a state function. 

Consequently, 

𝑄𝑟𝑒𝑣 =  −𝑊𝑟𝑒𝑣, 𝑇  =  ∫ 𝑃 𝑑𝑉
𝑉1

𝑉1+𝑉2

 =   𝑛𝑅𝑇 ln (
𝑉1

𝑉1 +  𝑉2
) 

and 

𝑆1 − 𝑆2 =  
𝑄𝑟𝑒𝑣

𝑇
 =  𝑛𝑅 ln (

𝑉1

𝑉1 +  𝑉2
) 

Thus the entropy change in the original irreversible process is 

𝑆2 − 𝑆2 =  
𝑄𝑖𝑟𝑟

𝑇
 =  𝑛𝑅 ln (

𝑉1 +  𝑉2

𝑉1
) 

which is positive. 
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2.2   Entropy as a measure of reversibility and degradation 

If the system remained isolated,  

 for a reversible process, S = 0 

 for an irreversible process, S > 0 

So entropy provides a measure of the degree of irreversibility of a transformation, or a measure of the 

degree of degradation of the system experiencing this irreversible transformation. 

The degree of irreversibility caused during a spontaneous process is due to the degradation of energy 

due to friction, etc. The higher the irreversibility, the higher is the degradation. 

 

2.3   Criteria of equilibrium 

For all irreversible processes, according to the second law, 

𝑑𝑆 >  
𝛿𝑄

𝑇
        or        𝑇𝑑𝑆 >  𝛿𝑄            (2.2) 

This inequality of the second law may take several forms.  Using the first law, this equation becomes 

𝑇𝑑𝑆 >  𝑑𝐸 −  𝛿𝑊         (2.3) 

Using only the mechanical work interactions, for all irreversible processes, we have 

𝑑𝐸 − 𝑇𝑑𝑆 + 𝑃𝑑𝑉 < 0        (2.4) 

The thermodynamic criterion of equilibrium for a closed system where no irreversible change occurs 

may be expressed as  

𝑑𝑆 ≤  
𝛿𝑄

𝑇
        or        𝑇𝑑𝑆 ≤   𝛿𝑄            (2.5) 

𝑑𝐸 − 𝑇𝑑𝑆 + 𝑃𝑑𝑉 ≥ 0              (2.6) 

When the process is reversible, the equality sign in Eq.(2.6) will prevail and yield 

𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉              (2.7) 

Equation (2.7) can be equally applied to irreversible processes since energy is a function of state only. 

Depending on the restrictions to which a system is subjected, introduction of other thermodynamic 

function is often useful. 

(1) At constant S and P 

(𝑑𝐸 − 𝑇𝑑𝑆 + 𝑃𝑑𝑉)𝑆, 𝑃 ≥ 0 

(𝑑𝐸 + 𝑃𝑑𝑉)𝑆, 𝑃 ≥ 0 

𝑑𝐻𝑆, 𝑃 ≥ 0 

𝐻 = 𝐸 + 𝑃𝑉 

𝑑𝐻 = 𝑑𝐸 + 𝑃𝑑𝑉 + 𝑉𝑑𝑃 

𝑑𝐸 + 𝑃𝑑𝑉 = 𝑑𝐻 − 𝑉𝑑𝑃 

(𝑑𝐸 + 𝑃𝑑𝑉)𝑆, 𝑃 = 𝑑𝐻𝑆, 𝑃 

(2) At constant T and V 

(𝑑𝐸 − 𝑇𝑑𝑆 + 𝑃𝑑𝑉)𝑆, 𝑃 ≥ 0 

(𝑑𝐸 − 𝑇𝑑𝑆)𝑇, 𝑉 ≥ 0 

𝑑𝐴𝑇, 𝑉 ≥ 0 

A = Helmholtz free energy (used as F in UG classes) 

𝐴 = 𝐸 − 𝑇𝑆 

𝑑𝐴 = 𝑑𝐸 − 𝑇𝑑𝑆 − 𝑆𝑑𝑇 

(𝑑𝐸 − 𝑇𝑑𝑆)𝑇, 𝑉 = 𝑑𝐴𝑇, 𝑉 
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(3) At constant T and P 

(𝑑𝐸 − 𝑇𝑑𝑆 + 𝑃𝑑𝑉)𝑇, 𝑃 ≥ 0 

𝑑𝐺𝑇, 𝑃 ≥ 0 

𝐺 = 𝐻 − 𝑇𝑆 = (𝐸 + 𝑃𝑉) −  𝑇𝑆 

𝑑𝐺 = 𝑑𝐸 + 𝑃𝑑𝑉 + 𝑉𝑑𝑃 − 𝑇𝑑𝑆 − 𝑆𝑑𝑇 

𝑑𝐸 − 𝑇𝑑𝑆 + 𝑃𝑑𝑉 =  𝑑𝐺 − 𝑉𝑑𝑃 + 𝑆𝑑𝑇 

(𝑑𝐸 − 𝑇𝑑𝑆 + 𝑃𝑑𝑉)𝑇, 𝑃 = 𝑑𝐺𝑇, 𝑃 

This means that at constant T and P, the equilibrium state has the minimum free energy and a 

spontaneous transformation can only occur if it is associated with a decrease in the Gibbs free energy 

of the system. 

 

 

3.   The Third Law of Thermodynamics 

3.1 Enunciation of the Third Law 

In 1902 TW Richards found that, as the temperature is decreased, the free energy of a reaction 

approaches asymptotically its enthalpy change: 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆 

Slope,  − ∆𝑆 =  (
𝜕∆𝐺

𝜕𝑇
)

𝑃
   

When T  0 K, G  H. 

So Richards proclaimed that S and CP approach zero 

as T is decreased. 

But when G is plotted against T, we can see that  

G may approach H with a  

(1)  vertical slope,  

(2)  a horizontal slope, and  

(3)  an oblique slope. 

 

(1)  systems not obeying the 3rd law 

(2)  perfect crystal 

(3)  disordered crystals 

Using Richard’s experimental data, Nernst found that the slope was never vertical and could be 

horizontal and suggested that at 0 K the entropy increment of reversible reactions among perfect 

crystalline solids is zero. 

Plank generalised this principle and subsequently developed the third law: 

“Entropies of all perfect crystalline solids at 0 K are zero.” 

However a better statement of the third law was given by Lewis and Randaall: 

“If the entropy of each element in some “perfect” crystalline state is taken as zero at the absolute zero 

of temperature, every substance has a finite entropy: but at the absolute zero of temperature the 

entropy may become zero, and does so become in the case of “perfect” crystalline substances.” 

Here the word perfect not only means without defects such as vacancies or dislocations, but also 

without disorder in the arrangement of atoms. So the substance should be homogeneous and in 

complete internal equilibrium. 

To be more rigorous, the statement of Lewis and Randall should include not only perfect crystalline 

substance at 0 K, but also “substances in any state in true thermodynamic equilibrium at 0 K (and 

consequently without defect)”. A case in point would be liquid helium at 0 K. 

An interesting alternate statement of the third law is that “the absolute zero of temperature can never 

be attained.” 

G 

 

H 

 

 

 
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3.2   Consequence of the Third Law 

Entropy increase due to rise in temperature at constant pressure is 

𝑆𝑇 − 𝑆0 𝐾  =  𝑆𝑇 =  ∫
𝐶𝑃

𝑇

𝑇

0

𝑑𝑇           (3.1) 

Similarly at constant volume 

𝑆𝑇 =  ∫
𝐶𝑉

𝑇

𝑇

0

𝑑𝑇            (3.2) 

Moreover, because of the third law, the entropy must remain finite above 0 K. Thus, CP/T or CV/T in 

above two equations must also remain finite as T approaches to 0 K. 

Now, according to the third law, the entropy of a perfect substance at 0 K is zero regardless of the 

pressure. Thus 

(
𝜕𝑆

𝜕𝑃
)

𝑇=0𝐾
=  0           (3.3) 

Using Maxwell’s relation 

(
𝜕𝑆

𝜕𝑃
)

𝑇
=  − (

𝜕𝑉

𝜕𝑇
)

𝑃
=  −𝑉𝛼 =  0          (3.4) 

and thus 

𝛼0𝐾  =  0         (3.5) 

Experimentally, the coefficient of thermal expansion has indeed found to approach zero near 0 K. 

The independence of entropy on the volume at 0 K leads to 

(
𝜕𝑆

𝜕𝑉
)

𝑇→0𝐾
=  0          (3.6) 

and since 

(
𝜕𝑆

𝜕𝑉
)

𝑇
=  (

𝜕𝑃

𝜕𝑇
)

𝑉
=  − 

 (
𝜕𝑉

𝜕𝑇
)

𝑃
 

 (
𝜕𝑉

𝜕𝑃
)

𝑇

 =   
𝛼

𝛽
         (3.7) 

we obtain 

(
𝛼

𝛽
)

0𝐾

 =  0          (3.8) 

As suggested by Eq.(3.8) and contrary to the behaviour of the coefficient of thermal expansion, there 

is no evidence that the coefficient of compressibility approaches zero at 0 K. 

 

3.3   Measurement of Entropy  

Temperature dependence of entropy at constant pressure: 

𝛿𝑄𝑃 = 𝑇𝑑𝑆𝑃 =  𝐶𝑃𝑑𝑇 

(
𝜕𝑆

𝜕𝑇
)

𝑃
=  

𝐶𝑃

𝑇
> 0 

Thus, for any phase the curve must always increase because its slope is always positive. 
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Temperature dependence of the heat capacities of copper  

at constant pressure and at constant volume.. 

 

There are discontinuities in the value of the function at temperatures of phase transformations such as 

melting or boiling. 

For most metals 

 S
0

f     2 – 3 cal/mol K   (Richard’s rule) 

 S
0

v     22 cal/mol K  (Trouton’s rule) 

 

 

Temperature dependence of the entropy of magnesium at 1 atm. 
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Better approximation for S
0

f is possible when entropy of fusion is correlated with the structure of 

solids. For example 

 S
0

f (hcp)  –  S
0
f (fcc)  =  S

0
f (fcc)  –  S

0
f (bcc)    0.25 cal/mol K 

Other structures, e.g., rhombohedra, diamond cubic, or orthorhombic, are often associated with rather 

covalent or ionic character, not metallic one. Generally their entropies of fusion are significantly 

higher. For example, S
0

f (Sb, rh) = 5.26, S
0

f (Ge, dc) = 7.3, and S
0

f (Ga, or) = 4.41. 

Under 1 atmospheric pressure and at room temperature (298 K), the entropy of a species may be 

obtained from 

𝑆298
0 =   ∫ 𝐶𝑃

0 𝑑 ln 𝑇
298

0

             (3.9) 

At 298 K, CP is generally very close to CV (the difference, expressed as CP – CV = TV
2
/, is small) 

and Debey’s model may be used to obtain an estimate of the entropy. 

𝐶𝑉 =   464.6 (
𝑇

𝜃𝐷
)

3

           (3.10) 

where D is the characteristic Debey temperature. Thus a hard and light material such as carbon or 

silicon having a large vibrational characteristic temperature D will have a relatively small S, while a 

soft and heavy material like mercury or lead having small D will have a large S. 

It is important to consider the relative magnitude of 𝑆298
0 .  Generally solid elements have entropies of 

less than 15 cal/g-at. K, and liquids are nearly in the same range (Richard’s rule). Monatomic gases 

have entropies of the order of 30-40 cal/mol-K while diatomic gases have larger entropies, between 

45-55 cal/mol-K (with notable exception of hydrogen because of its light weight and high D). 

Triatomic and larger molecules have even larger entropies. 

The entropies of solid and liquid compounds may be roughly estimates from the additions of the 

entropies of their constituent components in the solid or liquid states. So, a higher number of gram 

atoms per mol of a component correlate with a larger value for its entropy. For example, the values of 

S
0

298  for Fe, Fe0.95O, Fe2O3, and Fe3O4 are, respectively, 6.52, 13.76, 20.89, and 34.72 cal/mol-K. 

Entropies of reaction are defined in the same way as enthalpies of reaction, i.e., the entropy of the 

reaction 

𝜈1𝐴1 +  𝜈2𝐴2 +  … . + 𝜈𝑘𝐴𝑘  =   𝜈𝑘+1𝐴𝑘+1 + … +  𝜈𝑟𝐴𝑟             𝑜𝑟,      ∑ 𝜈𝑖𝐴𝑖 = 0
𝑟

𝑖=1
 (3.11) 

is 

ΔS = ∑ 𝜈𝑖𝑆𝑖

𝑟

𝑖=1
 (3.12) 

where Si is the molar entropy of component Ai.  Entropies of formation Sf of a compound have a 

definition similar to that of the enthalpies of formation. 

 


